منابع مشابه
Annihilator-small Right Ideals
A right ideal A of a ring R is called annihilator-small if A+ T = R; T a right ideal, implies that l(T ) = 0; where l( ) indicates the left annihilator. The sum Ar of all such right ideals turns out to be a two-sided ideal that contains the Jacobson radical and the left singular ideal, and is contained in the ideal generated by the total of the ring. The ideal Ar is studied, conditions when it ...
متن کاملFrames in right ideals of $C^*$-algebras
we investigate the problem of the existence of a frame forright ideals of a C*-algebra A, without the use of the Kasparov stabilizationtheorem. We show that this property can not characterize A as a C*-algebraof compact operators.
متن کاملRings with Annihilator Chain Conditions and Right Distributive Rings
We prove that if a right distributive ring R, which has at least one completely prime ideal contained in the Jacobson radical, satisfies either a.c.c or d.c.c. on principal right annihilators, then the prime radical of R is the right singular ideal of R and is completely prime and nilpotent. These results generalize a theorem by Posner for right chain rings.
متن کاملA topology on BCK-algebras via left and right stabilizers
In this paper, we use the left(right) stabilizers of a BCKalgebra (X, &lowast, 0) and produce two basis for two different topologies. Then we show that the generated topological spaces by these basis are Bair, connected, locally connected and separable. Also we study the other properties of these topological spaces.
متن کاملframes in right ideals of $c^*$-algebras
we investigate the problem of the existence of a frame forright ideals of a c*-algebra a, without the use of the kasparov stabilizationtheorem. we show that this property can not characterize a as a c*-algebraof compact operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1955
ISSN: 0002-9939
DOI: 10.2307/2032918